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a b s t r a c t

The present work proposes friction coupling at the wheel–rail interface as the

mechanism for formation of rail corrugation. Stability of a wheelset–track system is

studied using the finite element complex eigenvalue method. Two models for a

wheelset–track system on a tight curved track and on a straight track are established. In

Creep force at the interface is assumed to become saturated and approximately equal to

friction force, which is equal to the normal contact force multiplied by dynamic

coefficient of friction. The rail is supported by vertical and lateral springs and dampers

at the positions of sleepers. Numerical results show that there is a strong propensity of

self-excited vibration of the wheelset–track system when the friction coefficient is

larger than 0.21. Some unstable frequencies fall in the range 60–1200 Hz, which

correspond to frequencies of rail corrugation. Parameter sensitivity analysis shows that

the dynamic coefficient of friction, spring stiffness and damping of the sleeper supports

all have important influences on the rail corrugation formation. Bringing the friction

coefficient below a certain level can suppress or eliminate rail corrugation.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays, the impact of rail corrugation is not as strong as before since grinding is generally used to remove rail
corrugation of all types of rails all over the world. However, rail corrugation is still an elusive problem in the railway
industry. Grinding is a passive and expensive method. Eliminating or suppressing corrugation is still the best solution. Over
the years, many efforts have been made to understand the formation mechanisms of various types of corrugation. Grassie
and Kalousek [1] appear to be two of the first researchers to propose the classification of rail corrugation in terms of
wavelength-fixing and damage mechanisms, which is helpful to the understanding of rail corrugation mechanisms. Grassie
and Kalousek [1], Grassie [2], Sato et al. [3], Ahlbeck and Daniels [4], Knothe [5] and Oostermeijer [6] published several
comprehensive reviews. In these reviews, several mechanisms of corrugation formation were summarized, including the
self-excited rutting-type corrugation due to negative damping of friction, torsional vibration of wheelset, instability similar
to hunting motion and P2 resonance of the unsprung mass on track stiffness. These proposed generation mechanisms of
rail corrugation can be roughly grouped into two major schools of thought. First, it is commonly believed that rail
corrugation is caused by a combination of transient dynamic interaction between the wheel and rail and long term wear. A
basic assumption in this school of thought is that the original rail head has discontinuities as a result of production and
construction. This unevenness causes excitations to result in fluctuations of contact forces when a wheel rolls over a rail.
ll rights reserved.
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Under conditions of large creepages, fluctuating contact forces cause different wear rates of rail running surfaces to
generate corrugation. Hempelmann and Knothe [7], Igeland and Ilias [8] and Matsumoto and Sato [9] were the early
advocates of this school of thought. Their work has led to the development of integrated simulation programs
incorporating dynamics of the track and discrete element models for rolling contact mechanics. Vadillo et al. [10] found
that corrugation would cease when an intermediate sleeper was installed between each two sleepers. Hempelmann and
Knothe [7] considered vertical ‘pinned–pinned resonance’ to be the most likely source for corrugation. Ilias [11] found that
stiffer pads led to higher differential wear rates and therefore faster corrugation growth. Muller [12] and Nielsen [13]
investigated a nonlinear contact mechanics filter and used it to explain the independence of wavelength with respect to
speed for short pitch corrugation. Andersson and Johansson [14] developed a three-dimensional model to enable
corrugation studies on both tangent and curved tracks. Wu and Thompson [15] numerically investigated the effect of
multiple wheel–track passes using a frequency domain model. Jin et al. [16,17] and Jin and Wen [18] developed a more
complicated rail corrugation model that combined Kalker’s rolling contact mechanics with non-Hertzian form, a linear
frictional work and dynamics of half a railway vehicle coupled with curved tracks. Using the model, Jin and Wen [18] found
that discrete sleeper supports were a main cause of rail corrugation on curved tracks.

Secondly, rail corrugation is believed to be due to instability of wheel–rail systems. Although the investigators who
accept this point of view are fewer than those who accept the first point of view, the impact of this school of thought
continues to date. Clark [19] and Clark et al. [20]earlier investigated rail corrugation from the view point of stick–slip.
Brockley [21] studied the influence of friction-induced vibration on rail corrugation and derived a formula expressing the
relation between corrugation wear and friction-induced vibration. Muller [12] investigated stability of the feedback loop of
transient wheel–track dynamics. Ishida et al. [22] considered that fluctuation of Q/P (lateral/vertical forces) might lead to
stick–slip between rail and wheel and wear took place to form corrugation. Yoshihiro Suda et al. [23] and Matsumoto et al.
[24] also attributed rail corrugation to stick–slip. Wu and Thompson [25] investigated rail corrugation due to micro-slip.
Most recently, Sun and Simson [26] studied wagon–track modeling and parametric sensitivity on rail corrugation initiation
due to wheel stick–slip. They found that low static friction made the creepage easily overcome the wheel–rail interface’s
ability to accommodate it, thus leading to the wheel stick–slip process. Further, low kinetic friction coefficient intensified
the wheel stick–slip process.

Nevertheless, the generation mechanism of rail corrugation does not appear to be fully known. For example, the
existing rail corrugation theories cannot be used to satisfactorily explain the mechanism of friction modifiers (FMs), which
suppress rail corrugation as Grassie [2] suggested. Several investigators reported that bringing the coefficient of friction
below a level of about 0.35 might effectively suppress wear-type corrugation using friction modifiers [27–29]. Most
recently, Eadie et al. [27] reported that in most cases there was little or no new corrugation when FM was applied on sites
where corrugation formed rapidly under baseline conditions. He commented that in such a condition wear as a damage
mechanism alone was not sufficient to explain the cause. Daniel et al. [30] applied two rail corrugation models to analyze
the effect of FM on rail corrugation and concluded that FM did reduce rail corrugation. However, it appears that Daniel’s
work cannot predict elimination of rail corrugation. All these problems on rail corrugation suggest that there is still much
work to be done for obtaining a complete understanding of rail corrugation.

In this paper, a self-excited vibration model of a wheelset–track system is established and stability analysis of the
model is performed. The authors find that saturated creep force can induce self-excited vibration of a wheelset–track
system. The results can be used to explain some phenomena of rail corrugation which the existing theories cannot.
Especially, the results may be used to satisfactorily explain why short pitch corrugation generally occurs on low rail of a
tight curved track and why a low friction coefficient can eliminate rail corrugation. The object of the present work is to
extend understanding of the generation mechanism of rail corrugation and to explore solutions to rail corrugation.
The contents of this paper are as follows. First, a brief review of the progress in rail corrugation research and the existing
theories is presented. Next, finite element modeling of a wheelset–track system and nominal parameters are presented.
In Section 3, numerical results are given. Finally, conclusions close the paper.
2. Finite element modeling of a wheelset–track system

2.1. Interaction between wheel and rail

Generally speaking, wheels are always kept in contact with rails when a train travels on a track. Dynamic simulations of
vehicle curve negotiation and field measurements all demonstrate that on curved tracks the leading wheelsets of both the
front and rear trucks have positive angles of attack and the trailing wheelsets have positive or negative angles of attack
mainly depending on running speed, as shown in Fig. 1a [31]. For a wheelset with a positive angle of attack, lateral creep
forces have fixed directions as shown in Fig. 2a. Dynamic simulations also show that when a vehicle negotiates a tight
curved track, lateral creep forces of the leading wheelset become generally saturated, that is, equal to normal forces
multiplied by the dynamic friction coefficient. In the case of an unpowered wheelset, longitudinal creep force is low.
In tight curved tracks, the contact point between the outer wheel of the wheelset and high rail will shift to the flange root
for wheel and to the gauge corner for rail, whilst the contact point between the inner wheel and low rail is roughly kept in
the vicinity of the center of rail top for rail and of the tread for wheel, as shown in Fig. 2a. In straight tracks, it is assumed
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Fig. 1. Wheelset positions: (a) on a tight curved track and (b) on a straight track.

Fig. 2. Positions of contact points and directions of lateral creep forces. In the figures, dL and dR are the left and the right contact angles, respectively.

NL and NR are the normal forces at the left and the right contact points, respectively, FL and FR the lateral creep forces at the high (left) and the low (right)

contact points, respectively, KV and KL the vertical stiffness and lateral stiffness of each sleeper support spring, respectively, and CV and CL the vertical and

lateral damping coefficients of each sleeper support damper, respectively: (a) on a tight curved track and (b) on a straight track.
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that there is low lateral displacement of wheelset with respect to the center line of tracks as shown in Fig. 1b. In this case,
contact points between the left wheel and rail and between the right wheel and rail are easily determined by contact
geometry calculation as shown in Fig. 2b. In the present paper, contact geometry parameters of the wheelset on a curved
track are determined by curve negotiation calculation using the NUCARS package [32]. Vehicle and track parameters will
be presented in Section 2.5.
2.2. Finite element equations of motion of a wheelset–track system

When a vehicle negotiates a tight curved track or a wheelset undergoes large traction force or brake force on a straight
track, creep force between the wheel and rail probably becomes saturated [31]. In the present work, creep forces between
the wheels and rails are always assumed to be saturated. In this case, creep forces are similar to friction forces and
approximately equal to normal forces multiplied by the dynamic coefficient of friction. In the presence of friction,
modeling of the wheelset–track system is very complicated. The complexity is centred in the friction coupling between
two elastic bodies. In the literature, there are two approaches available to model friction contact coupling between two
elastic bodies [33]. One is based on the massless contact spring assumption at the interface [34,35]. Another is based on
Yuan’s method, in which there is a constraint on displacements between nodes in contact but no contact spring at the
interface [36]. Yuan [36] revealed that massless springs might not be suitable for representing rotor/pads contact at high
frequencies. In Yuan’s method, contact constraints in the normal direction are mathematically imposed. It may model
friction coupling between two elastic bodies more effectively. Yuan’s method is introduced briefly as follows [36].

For a friction system shown in Fig. 3, it is assumed that master and slave components are meshed separately with
coincident nodes on the interface. The nodes on the sliding surface of the master component are called master nodes, and
the ones on the slave component are called slave nodes. Furthermore, the coordinate system for displacement output at
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Fig. 3. Schematic of a friction system.
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each pair of coincident nodes must be such that one axis points to the positive direction of friction forces on the master
node, and another axis is perpendicular to the sliding interface. The axis along the direction of the friction force will be
called the tangential axis and the axis normal to the sliding interface will be called the normal axis. It is assumed that there
are a total of n degrees of freedom (DOFs) in the system, including 2m master and slave nodes on the sliding surfaces. For
the convenience of notation, the DOFs are sequenced such that the first m DOFs belong to the master nodes and are along
the sliding direction; the second m DOFs belong to the slave nodes and are along the sliding direction too; the third and
fourth m DOFs belong to the master and slave nodes, respectively, and are normal to the sliding interface. At the
equilibrium position during steady sliding, the following equations must be satisfied:

Xn

j ¼ 1

KijXj ¼ Fi, i¼ 1,2,. . .,2m (1)

Xn

j ¼ 1

KijXj ¼Ni, i¼ 2mþ1,2mþ2,. . .,4m (2)

Xn

j ¼ 1

KijXj ¼ Pi, i¼ 4mþ1,4mþ2,. . .,n (3)

FiþFiþm ¼ 0, i¼ 1,2,. . .,m (4)

where K is the global stiffness matrix, X the vector of nodal displacements, F and N are the vectors of friction and normal
contact forces at the master and slave nodes, respectively, and P is the vector of external nodal forces. It is assumed that the
sliding surfaces do not separate. This contact condition is imposed by the following constraint equations:

NiþNiþm ¼ 0, i¼ 2mþ1,2mþ2,. . .,3m (5)

Xi�Xiþm ¼ 0, i¼ 2mþ1,2mþ2,. . .,3m (6)

Note that P vanishes in the first 4m equations because there are no external loads at the sliding interface. K and P can be
calculated using the finite element method. Friction force on a master node always assumes a positive value because it
points to the positive direction of the tangential axis of the output coordinate system. The associated normal contact force
also assumes a positive value if the normal axis points to the inside of the master component. Therefore

Fi ¼ miNiþ2m, i¼ 1,2,. . .,m (7)

mi ¼ msþaVi, i¼ 1,2,. . .,m (8)

where mi is the dynamic coefficient of friction, ms the static coefficient of friction, a the slope of friction–velocity curve and
Vi the relative sliding speed. Inserting Eq. (2) in Eq. (7) leads to

Fi ¼ mi

Xn

j ¼ 1

Kiþ2m,jXj, i¼ 1,2,. . .,m (9)

Finally the equations below are obtained by substituting Eq. (9) for Fi in Eq. (1):

Xn

j ¼ 1

ðKij�miKiþ2m,jÞXj ¼ 0, i¼ 1,2,. . .,m (10)

Similarly, the equations for slave nodes are obtained as follows:

Xn

j ¼ 1

ðKij�miKiþ2m,jÞXj ¼ 0, i¼mþ1,mþ2,. . .,2m (11)
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Re-writing Eqs. (2) and (3), Eqs. (10) and (11) in matrix form yield

ðKþKf ÞX¼ PþN (12)

where N is a vector of normal contact forces at the interfacial nodes. Matrix Kf, which represents effects of friction, is
determined by the friction coefficient. K is determined according to Eqs. (10) and (11). Normal contact force vector N and
the first m DOFs can be systematically eliminated from Eq. (12) using Eqs. (5) and (6). After eliminating the normal contact
force N, Eq. (12) can be solved efficiently with an iterative solution method.

Once the equilibrium position for steady sliding is found, friction forces and contact forces on the sliding surfaces can be
recovered according to Eqs. (1) and (2). The equations for dynamic motion near the equilibrium position can be established
by replacing X, F and N with X+x, F+DF and N+DN and adding inertia and damping terms in Eqs. (1)–(6). After
simplification, the following equations can be derived:

Xn

j ¼ 1

Mij €xjþ
Xn

j ¼ 1

Cij _xjþ
Xn

j ¼ 1

Kijxj ¼DFi, i¼ 1,2,. . .,2m (13)

Xn

j ¼ 1

Mij €x jþ
Xn

j ¼ 1

Cij _xjþ
Xn

j ¼ 1

Kijxj ¼DNi, i¼ 2mþ1,2mþ2,. . .,4m (14)

Xn

j ¼ 1

Mij €xjþ
Xn

j ¼ 1

Cij _xjþ
Xn

j ¼ 1

Kijxj ¼ 0, i¼ 4mþ1,4mþ2,. . .,n (15)

DFiþDFiþm ¼ 0, i¼ 1,2,. . .,m (16)

DNiþDNiþm ¼ 0, i¼ 2mþ1,2mþ2,. . .,3m (17)

Xi�Xiþm ¼ 0, i¼ 2mþ1,2mþ2,. . .,3m (18)

where M is the mass matrix, C the damping matrix, and DF and DN are the dynamic increments of friction force and normal
contact force vectors, respectively. The relationship between DF and DN can be derived from the friction law. For the
master nodes with the normal axis pointing to the inside of the master component, the following equations can be
established:

FiþDFi ¼ miDðNiþ2mþDNiþ2mÞ, i¼ 1,2,. . .,m (19)

miD ¼ msþaðVi� _xiþ _xiþmÞ ¼ mi�að _xi� _xiþmÞ, i¼ 1,2,. . .,m (20)

Inserting Eq. (20) in Eq. (19) and utilizing Eq. (7), one obtains

DFi ¼ miDNiþ2m�aNiþmð _xi� _xiþmÞ, i¼ 1,2,. . .,m (21)

Combining Eqs. (14) and (21) results in an expression for DFi containing the first and second terms of x. For eigenvalue
analysis, the following equations for master nodes can be derived when DFi is inserted in Eq. (13) after the second term is
ignored:

Xn

j ¼ 1

ðMij�miMiþ2m, jÞ €xjþ
Xn

j ¼ 1

ðCij�miCiþ2m,jÞ _xjþaNiþ2mð _xi� _xiþmÞþ
Xn

j ¼ 1

ðKij�miKiþ2m, jÞxj ¼ 0, i¼ 1,2,. . .,m (22)

Following the same approach, the equations for the slave nodes can be obtained:

Xn

j ¼ 1

ðMij�miMiþ2m,jÞ €xjþ
Xn

j ¼ 1

ðCij�miCiþ2m, jÞ _xj�aNiþ2mð _xi� _xi�mÞþ
Xn

j ¼ 1

ðKij�miKiþ2m,jÞxj ¼ 0, i¼mþ1,mþ2,. . .,2m

(23)

Eqs. (22), (23) and (14), (15) can be compacted to a matrix form as below:

ðM�Mf Þ €xþðCþCf þCaÞ _xþðKþKf Þx¼DN (24)

Matrices Mf, Cf, Ca and Kf, which represent effects of friction on dynamics of the system near the equilibrium position,
are determined according to Eqs. (22) and (23). The dynamic increment DN in normal forces and the first m DOFs
xi, i=1, 2, y, m can be eliminated from Eq. (24) using Eqs. (17) and (18). After the elimination process, the equations of
motion can be reduced to the following form:

Mr €xþCr _xþKrx¼ 0 (25)

where Mr, Cr and Kr are (n�m) by (n�m) asymmetric matrices. The eigenavlue equation of Eq. (25) is given as follows:

ðMrl
2
þlCrþKrÞj¼ 0 (26)
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The general solution of Eq. (25) is

xðtÞ ¼
X

ui expðlitÞ ¼
X

ui expððaiþ joiÞtÞ (27)

where ui is the ith eigenvector of Eq. (26) and li=ai+joi the ith eigenvalue of Eq. (26); j is the imaginary unit. From Eq. (27),
it is seen that when the real part of an eigenvalue is larger than zero, displacement will increase with time, that is, vibration
of the system becomes unstable.

Eqs. (1)–(27) constitute the analysis theory of self-excited vibration of frictional systems. Similar to friction brake systems,
the finite element stability analysis of a wheelset–track system in the presence of friction (saturated creep force) is very
complicated and difficult [33–36]. Many efforts have been made to make it easier. Recently, ABAQUS versions 6.4 and above
provide a complex eigenvalue solution to the stability analysis of friction-induced vibration problems. This new capability
uses direct contact coupling at the contact interface described by Ouang et al. [33]. In the present paper, ABAQUS’s complex
eigenvalue analysis capability is applied to study stability of the wheelset–track system. The main procedure for applying
ABAQUS to perform the complex eigenvalue analysis of the wheelset–track system is given as follows:
(1)
Fig.
tight
nonlinear static analysis of the wheelset–track system for applying suspension forces,

(2)
 nonlinear static analysis to impose sliding speed on the wheelset,

(3)
 normal mode analysis to extract natural frequencies without friction coupling,

(4)
 complex eigenvalue analysis that incorporates the effect of friction coupling.
2.3. Finite element model of a wheelset–track system

From Fig. 2, it is seen that there are two distinct contact conditions for the high and low rails. Therefore these two
contact conditions must be established in modeling the wheelset–track system. Fig. 4 shows a solid model and two finite
element models of the wheelset–track system. In the finite element models, a rail length of 36 m is chosen for end effects
to be negligible. In the models, hinged–hinged constraints of rail ends are used. The distance between two adjacent
sleepers is 600 mm. The width of sleepers is 160 mm. The rails are supported by a group of lateral and vertical springs and
4. Model of the wheelset–track system: (a) solid model of the wheelset–track system, (b) finite element model of the wheelset–track system on a

curved track and (c) finite element model of the wheelset–track system on a straight track.
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a group of lateral and vertical dampers at each position of sleepers. The number of lateral or vertical springs in each group
of springs is the same as the number of rail nodes on the contact interface between the rail and each sleeper. A wheel with
worn tread profile of a freight car of nominal diameter 840 mm is analyzed. The rail mass is 60 kg/m.

2.4. Corrugation wear analysis

In this section, self-excited vibration of the wheelset–track system will be related to corrugation generation. In the
literature, it is generally accepted that fluctuating friction work results in undulant wear of rails [7,8]. Brockley [21]
proposed a modified wear equation as follows:

w¼ KðH�CÞ (28)

where w is the wear volume per unit time, K the wear constant, H the friction work rate (equals FV), F the creep force, V the
relative velocity and C the durability friction work rate.

Eq. (28) may be applied to explain corrugation formation due to self-excited vibration of the wheelset–track system.
When the lateral creep force F is saturated, F=mN, where m is the friction coefficient between the wheel and rail and N the
normal contact force. Lateral velocity of the wheelset V is equal to c multiplied by v, where c the angle of attack of the
wheelset and v the forward speed of the wheelset. When a vehicle negotiates a sharply curved track in a steady state, m, c
and v may be considered to be constant. In the present work, transient response of self-excited vibration of the wheelset–
track system is not analyzed. The reason is partially that transient response analysis of such a self-excited vibrating system
is a formidable task. Based on the understanding of friction-induced vibration, self-excited vibration is predicted by the
complex eigenvalue approach and the self-excitation mechanism is known as mode coupling [33–36], which is well known
and has been accepted in the dynamics community for other friction-induced vibration problems, such as brake squeal. In
mode coupling vibration, the tangential vibration component of the system is coupled with the normal vibration
component. This suggests that when such self-excited vibration occurs, normal force fluctuates. Several transient analysis
results support the conclusion [37]. In this paper, it is accepted that normal contact force fluctuates when self-excited
vibration occurs. Therefore it is deduced that friction work rate H fluctuates when self-excited vibration occurs. According
to Brockley [21], such a fluctuating friction work rate can result in rail corrugation.

2.5. Nominal parameters of the wheelset–track system

Density of the wheel and rail materials is r=7800 kg/m3. Young’s modulus of both is E=2.1�1011 N/m. Poisson’s ratio
of both is g=0.3. In the present work, speed of the vehicle running on a curved track is set to v=70 km/h. A curved track of
radius 300 m with a superelevation of 110 mm and a rail cant 1/40 is chosen. The wheelbase gauge of a wheelset is
1750 mm. Vertical, lateral and longitudinal spring stiffness values of the bogie primary suspension are 1.75�108, 3.5�108

and 3.68�108 N/m, respectively. Vertical, lateral and longitudinal damping values of the bogie primary suspension are
1.63�103, 1.24�103 and 1.24�103 Ns/m, respectively. Based on the NUCARS simulation, it is found that when the vehicle
negotiates the curved track at a speed of 70 km/h, the contact angles are dL=36.411 and dR=1.521. Angle of attack of the
leading wheelset is yw=0.301. The suspension forces are FSVL=103,200 N, FSVR=91,800 N, FSLL=7640 N and FSLR=7640 N. On
a straight track, it is assumed that the contact angles are dL=4.261 and dR=4.261, and suspension forces FSVL=100,000 N,
FSVR=100,000 N, FSLL=0 and FSLR=0. Stiffnesses of a sleeper support are set to kL=11.18�106 N/m and kV=34.5�106 N/m
[18,38]. In the present work, damping matrix C in Eq. (24) is neglected. Without damping, instability caused by mode
coupling can be revealed more clearly.

3. Results and discussion

3.1. Mode shapes of self-excited vibration of the wheelset–track system

Generally, the frequency of rail corrugation is considered to fall in the range 20–1200 Hz. Therefore the present results
are limited to this frequency range. The effective damping ratio is defined as z=�2Re(l)/9Im(l)9, which is a parameter to
measure propensity of self-excited vibration occurrence. The smaller the effective damping ratio, the easier the
corresponding self-vibration. For the wheelset–track system shown in Fig. 4, the complex eigenvalue analysis shows that
there are five unstable modes when friction coefficient m=0.4 with no damping in the sleeper support. In the present work,
only those modes whose damping ratios are less than �0.001 are given. It needs to be noted that if a damping ratio is not
less than �0.001, its corresponding unstable vibration is considered unlikely to occur. That is because there is always
enough structural damping to overcome this small amount of negative damping, which is not taken into account in the
present complex eigenvalue analysis in order to better understand the mode coupling mechanism of the wheelset–track
system. In Section 3.2, the effect of damping of sleeper supports on self-excited vibration of the wheelset–track system will
be discussed. Fig. 5 shows these five unstable mode shapes. From Fig. 5a, b and e it is seen that self-excited vibration most
probably takes place on the high rail and the wheel. From Fig. 5c it is seen that self-excited vibration also probably takes
place on both rails and the two wheels. From Fig. 5d it is seen that self-excited vibration also probably takes place only on
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Fig. 5. Mode shapes of unstable vibrations on a tight curve track, friction coefficient m=0.4, CV=0, CL=0, kL=11.18�106 N/m and kV=34.5�106 N/m:

(a) unstable vibration frequency fR=315.36 Hz, damping ratio z=�0.005, (b) fR=381.28 Hz, z=�0.004, (c) fR=431.84 Hz, z=�0.009, (d) fR=477.57 Hz,

z=�0.040 and (e) fR=798.79 Hz, z=�0.004.

G.X. Chen et al. / Journal of Sound and Vibration 329 (2010) 4643–46554650
the low rail and the wheel. It is found that the mode shown in Fig. 5d has a damping ratio of z=�0.040. This damping ratio
is the least among all these five damping ratios of unstable modes and suggests that the mode shown in Fig. 5d most easily
occurs. The frequency of unstable vibration is fR=477.57 Hz. The wavelength of the corresponding rail corrugation is
l=0.0407 m (forward speed of the vehicle v=70 km/h), which is a short wavelength corrugation. Therefore from Fig. 5 it
may be inferred that a short wavelength rail corrugation on tight curves most probably takes place on the low rail. The
conclusion is consistent with field results of railway lines [16]. It needs to be mentioned that no mode shapes shown in
Fig. 5 seem to include wheelset torsion, based on the animation of these mode shapes.

Trains undergo very large longitudinal traction forces or brake forces when they are accelerated or are braked. If these
longitudinal traction forces or brake forces become saturated, that is, equal to the normal forces multiplied by the dynamic
coefficient of friction, these saturated creep forces also can induce self-excited vibration of the wheelset–track system.
Fig. 6 shows the mode shapes of unstable vibration on a straight track. The wavelength of corrugation on tangent tracks is
evaluated to be l=0.077 m for the unstable frequency fR=431.50 Hz at a speed of 120 km/h and l=0.054 m for the unstable
frequency fR=614.62 Hz at a speed of 120 km/h. It needs to be mentioned that no mode shapes shown in Fig. 6 seem to
include wheelset torsion, based on animation of these mode shapes.

In the railway research community, stability of the wheelset–track system due to friction (saturated creep force)
coupling sounds very strange. However, it is well known in the tribology research community that friction can induce
vibration and noise. Up to now, the generation mechanism of friction-induced vibration is still not fully understood in the
tribology community [33–36]. This suggests that the mechanism behind friction-induced vibration is very elusive.
Nowadays, finite element complex eigenvalue analysis is thought to be an effective and matured method available to
predict squeal propensity of friction sliding systems [33]. In the present paper, finite element complex eigenvalue analysis
is applied to study stability of the wheelset–track system due to the saturated creep force coupling. To the authors’
knowledge, this is the first work to propose that saturated creep force can induce self-excited vibration in a wheelset–track
system in some conditions. This work brings a new insight to the rail corrugation generation mechanism.
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Fig. 7. Unstable frequencies of vehicle travelling on curved track with sleeper, m=0.4, CL=27,300 Ns/m, CV=14,500 Ns/m, kL=11.18�106 N/m and

kV=34.5�106 N/m.

Fig. 6. Mode shapes of unstable vibrations on a straight track, m=0.4, CV=0, CL=0, kL=11.18�106 N/m, kV=34.5�106 N/m: (a) fR=431.50 Hz, z=�0.0007

and (b) fR=614.62 Hz, z=�0.0022.
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3.2. Effect of sleeper support damping on self-excited vibration of the wheelset–track system

Sleeper support damping has a significant effect on self-excited vibration of the wheelset–track system. In the present
work, a series of lateral and vertical linear damping elements are added between the ground and each node on rail surfaces,
where they come into contact with the sleepers. The total linear damping force on each rail surface is assumed to be
FDL=CLVL for the lateral sleeper support damping elements and FDV=CVVV for the vertical sleeper support damping
elements, where FDL and FDV are the lateral and vertical sleeper support damping forces, respectively. VL and VV are the
lateral and vertical velocities of each node on the rail surfaces with respect to the ground, respectively. Fig. 7 shows the
distribution of unstable frequencies in the presence of sleeper support damping. From Fig. 7, it is seen that there are only
two negative damping ratios in the presence of sleeper support damping. The mode shapes associated with these two
negative damping ratios are shown in Fig. 8. Comparing Fig. 5d with Fig. 8a, it is seen that the main mode shape of self-
excited vibration with sleeper support damping is very similar to that without sleeper support damping. Under these two
conditions, all unstable vibrations take place on the low rail and the wheel. Comparing Fig. 5 with Fig. 8, it is seen that the
number and absolute values of negative effective damping ratios with sleeper support damping are much less than those
without sleeper support damping. This result suggests that sleeper support damping can greatly reduce propensity of self-
excited vibrations of the wheelset–track system. Therefore sleeper support damping can greatly suppress rail corrugation.
A further analysis demonstrates that sleeper support damping cannot eliminate all self-excited vibrations of the wheelset–
track system even when damping is made four times the nominal value. Fig. 9 shows a group of results. From Fig. 9, it is
seen that when CL=0, 5454.5, 54,545, 109,090 Ns/m and CV=14,500 Ns/m, or when CL=27,300 Ns/m, CV=0, 2900, 29,000
and 58,000 Ns/m, there is always self-excited vibration of frequency at about 476.7 Hz. Comparing Fig. 5 with Fig. 9, it is
found that lateral and vertical dampings of the sleeper supports have an obvious influence on self-excited vibrations of the
wheelset–track system. It is seen that if lateral and vertical dampings of the sleeper supports are too small, more self-
excited vibrations will probably take place.
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Fig. 8. Mode shapes of unstable vibrations shown in Fig. 7: (a) fR=476.70 Hz, z=�0.026 and (b) fR=1157.4 Hz, z=�0.007.

Fig. 9. Distribution of unstable frequencies with sleeper support damping on curved track, m=0.4, kL=11.18�106 N/m, kV=34.5�106 N/m:

(a) CV=14,500 Ns/m and (b) CL=27,300 Ns/m.
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3.3. Effect of friction coefficient on self-excited vibration of the wheelset–track system

Friction coupling is generally considered to be a main cause of self-excited vibration of frictional systems. Obviously the
larger the coefficient of friction, the stronger the friction coupling. Therefore the coefficient of friction has a big influence on
self-excited vibration of wheelset–track systems. Fig. 10 shows variation of the damping ratio z with friction coefficient m
between the wheel and the rail. It needs to be mentioned that when mo0.21 no unstable self-excited vibration of the
wheelset–track system is predicted. From Fig. 10a, it is found that when the friction coefficient m=0.21 there is a small
effective damping ratio whose value is �0.00064. From Fig. 10b, it is seen that when m=0.8 there are 5 negative damping
ratios whose values are less than 0 and larger than �0.082. Comparing Fig.10 with Fig. 7, it is also found that with
increasing friction coefficient, the number of negative damping ratios increases and the maximum absolute values of
negative damping ratios increase. This suggests that with increasing friction coefficient, rail corrugation occurs more easily.
This conclusion is consistent with the test results [27–29].
3.4. Effect of stiffness of the sleeper support spring on self-excited vibration of the wheelset–track system

Fig. 11 shows distributions of unstable frequencies at several stiffness values of sleeper support springs. Comparing
Fig. 7 with Fig. 11, it is found that stiffness of the sleeper support springs has an influence on self-excited vibration of a
wheelset–track system. From Fig. 11a and b, it is seen that when stiffness of the sleeper support springs is set to
kV=14.4�106 N/m, kL=11.18�106 N/m or kV=40�106 N/m, kL=11.18�106 N/m, the wheelset–track system has two self-
excited unstable frequencies. From Fig. 11c, it is seen that when stiffness of the sleeper support springs is set to
kV=58.8�106 N/m, kL=29.4�106 N/m, the unstable frequencies of the wheelset–track system become 506.66 and
704.09 Hz.
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Fig. 11. Distributions of unstable frequencies on curved track, m=0.4, CV=14,500 Ns/m and CL=27,300 Ns/m: (a) kV=14.4�106 N/m, kL=11.18�106 N/m,

(b) kV=48�106 N/m, kL=11.18�106 N/m and (c) kV=58.8�106 N/m, kL=29.4�106 N/m.

Fig. 10. Distributions of unstable frequencies on curved track, kL=11.18�106 N/m, kV=34.5�106 N/m, CV=14,500 Ns/m and CL=27,300 Ns/m:

(a) m=0.21, dL=15.281, dR=1.691 and (b) m=0.8.
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3.5. Effect of friction–velocity slope on self-excited vibration of the wheelset–track system

Eadie et al. [27] reported that the FM technique can suppress rail corrugation. Eadie’s conclusion may be reexamined by
applying the present complex eigenvalue approach. In ABAQUS package, two data points are given to fit the exponential
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Fig. 12. Friction–velocity relationship.

Fig. 13. Effect of negative friction–velocity slope on self-vibration of wheelset–track system on the curved track, m=0.4, CV=14,500 Ns/m, CL=27,300 Ns/

m, kL=11.18�106 N/m and kV=34.5�106 N/m.
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model of friction. The first point ms represents static coefficient of friction specified at relative speed Vr=0, and the second
point, (Vr, mr), corresponds to an experimental measurement taken at a relative speed Vr. The fitted friction–velocity model
is shown in Fig. 12. When the lateral sliding speed of the wheelset as a result of angle of attack is Vr=cV=0.30�3.14/
180�70/3.6 m/s=0.102 m/s and the dynamic coefficient of friction predicted by the friction model shown in Fig. 12 is
mr=0.4. Fig. 13 shows a comparison between results with and without negative friction–velocity slope. From Fig. 13 it is
seen that values of negative damping ratios with negative friction–velocity slope are less than those without negative
friction–velocity slope. This result suggests that negative friction–velocity slope more easily leads to self-excited vibration
of the wheelset–track system, and therefore rail corrugation. This conclusion is consistent with Eadie’s test results [27].
However, from Fig. 13, it is found that there is a small difference in negative damping ratio under these two conditions.
This suggests that negative friction–velocity slope has a small effect on unstable vibration of wheelset–track systems.
4. Conclusions

The present work studies the formation mechanism of rail corrugation from the viewpoint of saturated-creep-force-
induced self-excited vibration of a wheelset–track system. A finite element model consisting of a wheelset, track and rail
support springs and dampers is established and analyzed. In the model, it is assumed that creep forces between wheels and
rails are saturated, which is a realistic assumption when the wheelset negotiates a sharp curve as well as on straight track
during traction and braking. Several sensitivity analyses of self-excited vibration of a wheelset–track system are carried
out. The following conclusions can be drawn.
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The saturated creep force can cause self-excited vibration of the wheelset–track system when the friction coefficient
between the wheels and rails is above 0.21. This self-excited vibration is probably responsible for rail corrugation.
Coefficient of friction between the wheel and the rail has an important effect on self-excited vibration of the wheelset–
track system and therefore on the occurrence of rail corrugation. Propensity of rail corrugation occurrence increases with
increasing coefficient of friction. Sleeper support damping has a big effect on occurrence of rail corrugation and may
suppress rail corrugation. Negative friction–velocity slope has a small influence on occurrence of rail corrugation.
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